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Abstract. The current relaxation of disordered one- and two-dimensional systems is treated 
on the basis of a self-consistent approach for the diffusion coefficient. At the predicted 
delocalization field strength a long-time power law decay of the cumnt is gbserved according to 
j ( t )  E t-'/* if inelastic scattering processes are neglected. This slow current relaxation should 
be measurable in one-dimensional systems. The experimental verification of the results for a 
two-dimensional electron gas is complicated on account of the fact that both the delocalization 
field strength and the chxacteristic decay time depend exponentially on the disorder parmeter. 
The mmumment af the slow 2D current relaxation requires very low carrier densities and 
extremely low temperarures. 

1. Introduction 

The effect of a DC electric field on the Anderson localization of electrons in disordered 
solids has been quite a controversial issue for many years. It had been realized that 
carrier heating due to the electric field plays an important role in the transport properties 
of semiconductor microstructures. However, the direct electric field effects on the quantum 
interference observed in disordered two-dimensional systems had been accounted for 
differently. According to Altshuler et a1 [I] in contrast to a high-frequency field a constant 
electric field does not directly alter the quantum corrections to the conductivity, 'since the 
underlying time reversal symmetry is not violated. Qualitatively the same results were 
obtained by Lei and Cai [Z] and Hershfield and Ambegaoker [3] who included coherent 
backscattering processes in their balance equation and generalized Boltzmann equation 
approach, respectively. An influence of the electric field on the collision integral was 
excluded. Non-linear electric field effects on the resistivity were treated in [Z]. 

On the other hand Kirkpatrick [4] extended the self-consistent theory of Vollhardt and 
Wolfle [5]  to treat the influence of a finite electric field and'obtained the result that all 
two-dimensional states are delocalized even in very small electric fields. A direct electric 
field effect on the Cooperon was also predicted by Tsuzuki [6]. 

For a one-dimensional disordered solid there are exact and rigorous results for the field 
dependent electron localization [7,8]. At small but finite electric fields the theories predict 
a power law localization rather than an exponential dependence typical for electrons at zero 
field strength. At some critical value of the electric field there is a mobility edge above 
which the electrons are delocalized. These ID resulk were qualitatively reproduced by 
Kirkpatrick's self-consistent approach too [4]. 

Recently we extended the self-consistent theory of localization worked out by Vollhardt 
and Wolfle [5] to treat the influence of small electric and'magnetic fields [9]. In the present 
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paper we apply this approach to investigate the peculiarities of the current relaxation of 
disordered one- and two-dimensional systems. 

V V Brykrin and P Kleinert 

2. Quantum diffusion in an electric field 

The starting point of our phenomenological approach in [9] was the following self-consistent 
equation for the diffusion coefficient D :  

Here DO = usrjd is the bare diffusion coefficient in a d-dimensional lattice obtained from 
the Boltzmann transport equation ( U P  is the Fermi velocity, NF the density of states at the 
Fermi surfacet and T the elastic scattering time). The Cooper propagator C(q), from which 
the renormalized autocorrelation function is obtained by a summation over q ,  was calculated 
from the Laplace transformed quantum diffusion equation 

[s + q 2 D  + iqEplC(q) = 1 (2) 

In the thermal equilibrium ( E  =~ 0) the parameter s of the Laplace transformation can 
be identified by the complex frequency -io. As in 191 here we consider the restricted 
electric field region where we can assume that the Einstein relation between the renormalized 
mobility p and the diffusion coefficient is still valid: 

p = eDNF/N.  (3) 

N is the electron concentration, which is related to the Fermi energy EF by NjNF = 2E~ jd .  
For a two-dimensional lattice (d = 2 )  from (1)-(3) a delocalization field strength Eo was 
predicted, which depends exponentially on the disorder parameter kFh (A2 = 2Dor is the 
elastic scattering length): 

~ K & F  ?I Eo - exp ( - + A ) .  
e (4) 

The upper momentum cut-off of the integral in (1) denoted by K has to be determined by 
a physical argumentation given below. Below this delocalization edge the current vanishes 
and above Eo the current depends logarithmically on the electric field according to 

For a one-dimensional lattice we reproduced the exact value of the delocalization field 
strength obtained by Prigodin [8]. These results were obtained in the limits + 0 where 
we completely neglected inelastic scattering processes. 

Our phenomenological approach was supported by physical arguments, which follow 
from a quantum diffusion picture [9]. According to this reasoning the static electric 
field gives rise to an upper cut-off time for the return probability because the diffusion 

t In 191 the definition of NF indudes a factor of WO in addition 
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volume moves with the constant velocity P E .  Up to a numerical factor the predicted field 
dependence of the diffusion coefficient agrees with (5). 

Inelastic scattering can phenomenologically be treated by introducing an inelastic 
scattering time 4 (s + s + l /re ,  cf, e.g., 121). Due to inelastic scattering the current 
does not vanish below the field strength Eo, rather with decreasing r, the delocalization 
edge is increasingly washed out. In this case the field dependence is obtained from the 
numerical solution of the self-consistent equation for the diffusion coefficient as discussed 
in 191. 

Here we focus OUT attention on the time dependence. If there is no electric field (thermal 
equilibrium) s can be identified by the complex frequency -io and the frequency dependent 
diffusion coefficient D ( o )  may be calculated and analysed from (1) and (3). However, if 
there is a non-linear field dependence of the current a frequency representation of the 
diffusion coefficient is not appropriate because one does not expect an oscillating time 
dependence. Therefore, the time dependent current is considered, which results if initially 
at t = 0 a constant electric field is switched on (i.e. EO) = EO@), where o ( t )  is the step 
function). Using the Einstein relation (3) the time dependence of the current is obtained 
from the inverse Laplace transformation 

where D(s,  E) is the solution of the self-consistent equations (1) and (2). In the following 
sections we derive explicit expressions for the time dependent current for disordered one- 
and two-dimensional systems. 

3. Current relaxation in two-dimensional systems 

be cause^ the localization of two-dimensional electrons in a constant electric field is quite a 
controversial subject we start the discussion with this case. The q intepral in (1) is easily 
calculated and we obtain from (6) the following equation for the time-dependent current: 

where we introduced the dimensionless variable U = sT and the characteristic time 

In (7) f (a) is the dimensionless current f(u) = 4 n % N ~ D ( u ) ,  which, according to (1)-(3), 
obeys the self-consistent equation 

f = I n  

and which depends on the electric field via E = E/Eo. To proceed further we transform 
(7) into a form from which the r, dependence becomes more transparent by introducing the 
new function ~ ( t )  = exp(t/s,) d f/dt. Then from (7) and (9) we have 
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with 
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where the Laplace transformed function p(u) is obtained from the transcendental equation 

which does not depend on re. In (10) fm = f ( r  = 00) = f(u = 0) is the dimensionless 
stationary current, which is obtained from 

Now we can perform the inverse Laplace transformation in (11). For this purpose it is 
useful to replace the integral over u in (1 1) by an integration over z = e9 according to the 
equation 

(14) 2 U = (z - E  )Inz.  

Integrating by parts and performing some obvious calculations one obtains 

I 1 
p(x) = -” . / dq’ exp[xq’(e9’ - E’)] = - / 2 exp[x(z - E’) In z]. 

2nx 2nx z 

Now we choose an appropriate integration contour in the complex z-plane. For this end 
polar coordinates z = z(a) = p(a) exp(ia) are introduced and an integration over a along 
p(a) is performed: 

The contour p(a) is chosen in such a way that the imaginary part of the exponent in (16) 
vanishes. This gives the following transcendental equation for p(a):  

p Inp sina + a(p cosa - E’) = 0. (17) 

If the integration is taken along this contour only the real part of the integral remains and 
we have 

p(x) = -- daexp(x[(p(a)cosa -~ ’ ) Inp (a )  - asinap(a)]). (18) 
2nT sa“ -ao 

The contour p(a) is shown in figure 1 for three different values of the electric field (E = 0. 
1 and 2). In the large-scale representation of the polar coordinate plot (figure l(b)) all three 
curves coalesce. It is seen from figure 1 that the integration over the deformed contour does 
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a b 
Figure 1. (a) PoLv coordinate plot of the integntion contours in (16) for E = 0. 1 and 2 (from 
left to right). In the large-scale representation (h) the difference betwaen the concow is not 
resolved. The mgle a,, of the asymptotic integration contour is shown in (b). 

not change the value of the integral and that the desired Laplace tmnsformed function is 
obtained. 

At long times after the electric field is switched on ( t  >> T, where x >> 1) the main 
part of the integral in (18) comes from 01 %~O.  Expanding the integral around 01 = 0 up to 
the second order we obtain 

(1% (o(x) = -[27~0(2+ I ~ P O ) I  x . exp(-xpoInZ PO) 

po In(epo) = E‘. (20) 

-112 -312 

where po = p(0r = 0) is the solution of 

Now from (10) the asymptotic time dependence (r >> T )  is easily calculated: 

where O(x) is the error function and the following characteristic relaxation time: 

1 po~n2po 1 
TK T re 

+ -. _=-  

The asymptotic representation (21) further simplifies if I >> TE: 

f ( t )  = fm + ~ z ( 2  + ~npo)l-’/’ 7 rECEJTe-*lr, (23) 

Numerical results obtained from (10) and (18) and from (21) are shown in figures 2 and 
3 by solid and dashed lines, respectively. In fi,we 2 the transient current is plotted for 
different values of the electric field (E = 0.9. 1 and 1.1) and for the case where the inelastic 
scattering time re is much larger than T (T = 10-’~,). At the delocalization field strength 
( E  = 1) a very slow current relaxation according to f(r)  (nf/T)-’/’ is observed. If 
inelastic scattering becomes essential the slow current decay is replaced by an exponential 
relaxation as shown in figure 3 (for T = lo-’&, note the change of the scales). The long- 
time tail of the 2D current relaxation at the delocalization field strength occurs only at very 
large inelastic scattering times. 



7884 V V Bryksin and P Kleinert 

- - - - 0 . 2 5 k I  0.15 0.2 (1:-;--- s.1.1 _e,- .-,, .I .I ,I 

,',, 
0.1 _/-- 

c ;, __- - - *  s -0.9 

r ;o.o __- - - * -  

___.-- 
___.-- 0.05 

__- - -  
8 0.05 0.1 0.35. 0.2 0.5 1 " 1.5 2 

fI  /TI.'" [tlTI'ln 

Figure 2. Time dependence of the normalized ZD 
current f ( t )  for T = and E = E / E o  = 0.9, 
I and 1.1 (solid lines). The dashed lines are calculated 
from (211. from (21). 

Figure 3. Xme dependence of the normalized ZD 
current f(r) for T = IO-'r, and E = E J E o  = 0.9, 
1 and 1.1  (solid lines). The dashed lines are calculared 

4. Current relaxation in one-dimensional systems 

The current relaxation in a one-dimensional system (d = 1) can be treated in the same 
manner as the case d = 2 in section 3. In c o n m t  to a two-dimensional electron gas now 
neither the edge field strength given by [8,9] 

nor the characteristic time 

T = ( ~ J Z F Z N F ) ~ D ,  (7-5) 

depend exponentially on the disorder parameter. 
dimensionless current f = D/Do has the following form: 

The self-consistent equation for the 

which together with (7). (10) and (11) allows the calculation of the time dependent current. 
For d = 1 (15) has now the following form: 

which is again evaluated by introducing polar coordinates 'p' = p(a)exp(ia) and by 
choosing the integration contour in such a way that the imaginary part of the integral 
(27) vanishes. This gives the condition 

(28) 
P 
2 

COSU = --(1+ &*P*) 
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(t I T) -'" 
Figure 4. Time dependence of &e normalized ID current f (1) for T = 10-'r, and F = E/Eo  = 
0.9. 1 and 1.1 (soli  lines). The dashed lines ax c a l c u W  from (31). 

from which the following equation for p(x) results: 

' po is the real solution of the algebraic equation 

&'Po' + po - 2 = 0 (30) 

with PO < 2. (IO), (11) and (29) are used in our numerical calculation. 

from (10) and (29): 
As in section 2 an asymptotic expression ( t  >> T) for the current decay can be derived 

where the characteristic time is now given by 

1 1 2(1 -Po)' + 
r E  % TP: 
_ = _  

and fm = f(o = 0). 
Numerical results obtained from (10) and (29) (solid lines) and from (31) (dashed 

lines) are shown in figure 4 for T/r ,  = lo-'. These curves are vexy similar to the two- 
dimensional spectra in figure 2. Just at the delocalization field strength (& = 1) the current 
decays according to the power law f ( t )  = (2nt/T)-l'*. 
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5. Discussion 

Because the current relaxation of one- and two-dimensional disordered systems, derived 
in sections 2 and 3, does not differ qualitatively, we mainly discuss the results obtained 
for d = 2. From (23) one obtains an exponential time decay of the current according to 
j ( t )  FS t-3/2exp(-t/rE) with the characteristic relaxation time r E  (22), which depends on 
the electric field via po in (22). If inelastic scattering is neglected (T, + CO) r~ diverges 
at the delocalization edge (E = l), as can be seen from (20) and (22). Consequently, the 
current decay considerably diminishes if the electric field E approaches the delocalization 
field strength Eo. In the near neighbourhood of the edge (1 E - I I<< I) the time dependence 
of the current has the following form: 

from which at E = Eo a power law dependence f ( t )  ( x ~ / T ) - ' / ~  results. This long-time 
tail of the current relaxation is due to the existence of the delocalization edge. The current 
relaxation dynamics accelerates if the electric field deviates from EO. 

A slow current decay at the edge field strength Eo is also obtained for the one- 
dimensional case, where for t / T  >> 1 the asymptotic expression f ( t )  = (2nt/T)-1/2 
holds. If the electric field slightly deviates from EO (i.e., 1 E - 1 I<< I) the asymptotic time 
dependence has the form 

which differs from (33) only by the occurrence of an additional factor of two. 
We conclude that the slowing down o f  the current relaxation at the delocalization 

edge is a characteristic property of weakly localized one- and two-dimensional systems. 
Experimentally this effect can be investigated by considering the destruction of the quantum 
interference due to a static electric field. For two-dimensional systems in particular the 
experiment is complicated by inelastic scattering (cf figure 3) because the current relaxation 
weakens remarkably only if T << rs (cf (21) and (22)). Furthermore, according to (8) T 
increases exponentially with n k p L / 2  and, therefore, very low carrier concentrations and 
extremely low lattice temperatures are required in order to measure the effect. This is seen 
from figure 5 where the dependences of the characteristic decay time T and the delocalization 
field strength Eo on the electron concentration N and elastic scattering time r = h/uF are 
shown. (In order to reproduce the results of the weak-localization theory we chose for 
the upper momentum cut-off K = [9].) To satisfy the condition T << rG the elastic 
scattering time r should be small (figure 5(a)). On the other hand, with decreasing t one 
observes a rapid increase of the edge field strength (figure 5(b)), which is accompanied by 
electron heating not considered here. Therefore, it seems to be not simple to find an optimal 
parameter set for the experiment. The situation is not so complicated for a one-dimensional 
system where the edge field strength is higher and the requirement T < r, is not restrictive 
because T = 4s (cf (25)) does not exponentially increase with the disorder parameter. 

Measurements of the transient currents have been used extensively in the study of 
localized band tail states in amorphous semiconductors. It is a characteristic feature of non- 
crystalline systems that at different time scales different relaxation mechanisms are relevant. 
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Densitv N Tl/cm21 Densitv N [l/cm21 
Figure 5. The relaxation time T (a) and delocalization field strength E,, (b) as a function of 
the electron density. The elastic scattering times are i = 0.1.0.2. . . . , 1 ps and we used for the 
effcctive mass m* = 0.067mo of GaAs. 

At the short-time interval immediately after the electric field is applied the current relaxation 
is due to percolation over finite conducting clusters of the microscopically inhomogeneous 
system. After a long time period (i.e., at low frequencies) another relaxation mechanism 
becomes important, namely the current transport over some optimal percolation paths across 
the whole sample. These different relaxation processes at different time intervals give rise 
to a dispersive transient current (cf, e.g., [IO, 1 I]), which was mainly investigated for three- 
dimensional systems on the basis of the hyperbolic decay functions [12]. The transient 
current of photoexcited caniers in amorphous thin films was treated in [13]. However, to 
our knowledge, there is no experimental evidence for the predicted long-time tail of the 
current relaxation, which is due to the existence of a delocalization field strength in one- 
and two-dimensional systems. 

6. Summary 

In this paper we considered the current relaxation of disordered one- and two-dimensional 
systems by considering the direct influence of a static electric field on the Cooper propagator 
and by neglecting hot-electron effects. Using the Einstein relation for the mobility the time 
dependent current is obtained from the inverse Laplace transformation of the diffusion 
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coefficient. At the delocalization field strength both the one- and two-dimensional systems 
exhibit a power law current decay according to j ( t )  = t+* if inelastic scattering processes 
are neglected. This long-time current relaxation can easily be observed in disordered o n e  
dimensional systems because the condition T << T, for the characteristic decay time T = 4r 
is not so restrictive. The situation alters completely for the two-dimensional case where 
both the delocalization field strength Eo and the decay time T depend exponentially on the 
disorder parameter k ~ h .  Therefore, the measurement of the predicted 2D long-time relaxation 
requires very low carrier densities and extremely low lattice temperatures. 

V V Bryksin and P Kleinert 

Further theoretical and experimental research is desired in this direction. 
The situation for a experimental verification might be better for an anisotropic two- 

dimensional electron gas where one expects that with increasing anisotropy the restrictive 
conditions of the two-dimensional case diminish. 
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